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Abstract. Polymer sandwich structures become widely used in the transportation industry due 

to their high bending stiffness and strength combined with low weight. In the conceptual design 

phase, it is essential to model the mechanical behavior of the sandwich properly in full-vehicle 

scale in order to analyze different design variants effectively. In this paper, a finite element 

modeling method is shown. The method is introduced on a sandwich structure with glass fiber 

reinforced, vinyl-ester matrix composite face-sheets and a PET foam as core material with an 

inhomogeneous structure. To model the sandwich panel with layered shells, where the core 
material is a single layer, equivalent stiffness constants of the inhomogeneous core are needed. 

To determine these constants, a detailed finite element model was created and virtual tensile and 

shear tests were performed. On the other hand, an analytical method was also shown. By 

applying the Voigt- and Reuss-rule on the inhomogeneous core, the needed stiffness constants 

can also be determined properly. Results of the two methods were compared and they showed a 

good correlation. Validation of the model was performed via comparing the results of the 4-point 

bending experimental tests and the simulation results. 

1.  Introduction 

Composite materials are increasingly present in the industry [1]. Polymer sandwich structures with 

composite face-sheets and foam core are widely used not only in aerospace but in automotive, autobus, 
marine and construction engineering as well. The main reasons are their high bending stiffness and 

strength combined with low weight. Therefore, extensive studies have been conducted on sandwich 

structures due to their significance in industrial applications. Although a comprehensive review of 
current trends in research and applications of sandwich structures was accomplished by Birman and 

Kardomateas [2] in 2018, here, some of the papers in this field are reviewed briefly. Different case 

studies have been published from automobile industry with the aim of weight reduction by using 

sandwich panels in the whole body, the floor panel or the luggage panel [3-5]. However, polymer 
sandwich structures are present in the autobus, marine and construction engineering as well [6-8]. 

Almost all the applications use thermoset polymers but beside the dominance of thermosets, 

thermoplastic core materials are strongly developed to take the advantages of thermoforming and 
recycling. The aim of their technology process development is cost efficiency [9]. 

To make the design process of sandwich structures effective it is essential to model the mechanical 

behavior accurately. Many researches have been published using numerical modeling and also 
experimental tests [10,11]. The main micromechanical methods of the modeling of sandwich structures 
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are classified on the basis of whether they are modeled as an equivalent single layer, or as multiple 

layers. A more detailed modeling method is to use 3D finite elements. Ivanez et al. [12] analyzed the 

dynamic flexural behavior of a sandwich plate with a three-point bending test. They haven’t used a 
layered shell model but a 3D-model instead with a proper damage-model of the core material as well. It 

was concluded that the compressive strength of the core material affects the failure of the sandwich 

more than the tensile strength of the composite face-sheets. Manalo et al. [13] investigated strength and 
failure modes of a polymer composite sandwich beam with 4-point bending in edgewise and flatwise 

position. Here, also a 3D model was used in the FEM simulation. The edgewise position showed stiffer 

behavior as expected, the failure mode was the progressive failure of the face-sheet, while in flatwise 

position, it was the shear failure and debonding of the core. Awad et al. [14] tested a newly developed 
GFRP sandwich panel with point load. A crushable foam model and Hashin failure criteria were used 

in the finite element analysis. Polymer sandwich panels with composite face-sheets and foam cores were 

investigated under impact loading by Long et al. [15]. Drop-tests were performed with different impact 
energy. Foam density and stacking sequence of the composite skins were varied. A new user-defined 

material was developed in Abaqus in order to model the sandwich failure more effective. Delamination, 

fracture and foam crush regions were analyzed to better understanding of the strength of such structures. 
Our goal is to develop a finite element modeling method of sandwich panels with inhomogeneous 

core material that can be effectively used to model the deformation behavior of a structure even in full-

vehicle scale, where the sandwich is modeled as layered shells. If the core is modeled as a single layer, 

equivalent stiffness constants are to be determined. Different methods are shown to extract these 
constants. Our results hold the promise of the development of a cost-effective sandwich modeling 

method that can be effectively used in the product development phase in the industry. 

2.  Materials and Experimental Tests 

The material chosen to analyze the polymer composite sandwich structure is a glass fiber reinforced 

composite with vinylester matrix. This type of composite is typically used in the transportation industry. 

The fiber reinforcement is a multidirectional fabric with a stacking sequence of 0°/45°/90°/-45°. The 
commercial name of the product is QE fabric as it is a so-called quadraxial fabric (Saertex GmbH, 
Germany). The specific weight is 1232 g/m2. The face-sheet of the tested sandwich structure has 3 layers 

of this fabric with the same orientation and with a symmetric lay-up. The thickness of the face-sheet is 

2.5 mm. The matrix material of the composite is a vinylester, its commercial name is Distitron VE220 
(Novia Kft., Hungary). It is recommended for resin-transfer molding or vacuum injection technology. 

The specimens were manufactured with vacuum injection technology, Butanox-M50 (methyl ethyl 

ketone peroxide, solution in dimethyl phthalate) was used as initiator and 0.2 wt% cobalt solution as 
activator. The curing time was 24 h in room temperature and then 3 h at 100 °C. 

The core material of the sandwich panel is a PET foam with the commercial name of Airex T90. It 

is a closed-cell foam with a density of 110 kg/m3. The type of the foam is named FlexiCut. It has a 

thickness of 25 mm and 1.2 mm thick cuts every 30 mm. Both sides have cuts, on one side the 85 % of 
the thickness is cut, on the other side the 20 % of the thickness. These cuts help the manufacturing, they 

transfer the resin and this structure allows the full impregnability of the sandwich. The structure of the 

foam is shown in Figure 1. These foams are likely to be used in the industry, they have good recyclability 
and flame-retardant properties can be also enhanced by different additives [16]. 

The mechanical tests were performed on a Zwick Z020 uniaxial testing machine on room temperature 

and with a relative humidity of 46±2 %. The Young’s moduli and Poisson-ratios of the composite face-
sheets were carried out with a displacement controlled tensile test following EN ISO 527-4 standard 

with the Type 3 specimen. The test speed was 2 mm/min. The test was performed until failure. The 

strain components were measured with two unidirectional strain gauges perpendicular to each other on 

one side of the specimen. 
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Figure 1. The structure of the FlexiCut foam: (a) sketch (b) 3D-view 

The in-plane shear modulus was carried out with Iosipescu-test of a V-notched specimen following 

the standard ASTM-D5379 [17]. The test speed was 2 mm/min. To apply a clear shear loading on the 

specimen a special fixture is needed. During the test the specimen must remain plain and the edges 
parallel to each other. The sketch of the fixture can be seen on Figure 2 (a). To measure the shear 

deformation, strain gauges were used with a placement that can be seen on Figure 2 (b). 

(a) 

 

 

 

 
 

 

 

(b) 

Figure 2. (a) The test fixture of the shear-test (b) Placement of the strain gauges 

The shear deformation can be calculated as [17]: 𝛾𝑥𝑦 = 𝜀1 − 𝜀2 (1) 

 

 

The stiffness parameters of the face-sheets can 
be determined with these tests but the core 

material cannot be directly tested. During 

manufacturing, the resin flows into the cuts of the 
used FlexiCut foam and that can significantly 

influence the stiffness of the core. This effect can 

be examined by the test of the complete sandwich. 

For the sandwich beams, a 4-point bending was 
performed following the standard ASTM-D7249. 

The test speed was 6 mm/min. The measured 

sandwich beam can be seen on Figure 3. 
Figure 3. 4-point bending of the sandwich beam 
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The aim of the study is to develop a method with which the deformation behavior of the sandwich 

structure can be effectively modeled in full structure scale in finite element analyses. When modeling a 

complete structure, e.g. vehicle body, layered shell elements are the most widely used instead of using 
solid elements. Solids allow deeper understanding of stress-state or even failure modes but the modeling 

and the calculation as well are more time-consuming so they are used generally in specimen scale. 

In this study, first, we derived the stiffness parameters of the composite face-sheets from the tensile- 
and shear-tests, then we investigated the effect of the resin-walls in the core material on stiffness. For 

that, we used a mixed model using layered shells for face-sheets, solids for the core and shells for the 

resin-walls in the core. After that a method is introduced to derive the equivalent stiffness parameters of 

such a core material with the help of the Voigt- and Reuss-rules and the numerical shear-test of the core 
with its resin-walls. When having the equivalent stiffness constants, the modeling of the whole sandwich 

structure with a layered shell is possible. Results are validated with the mixed solid-shell models and 

the experimental tests. 
 

3.  Modeling Method 

Modeling composites with layered shells is a widely used modeling technique. With this method, the 
layers are taken as homogeneous, anisotropic ones and the stiffness of the whole laminate is calculated 

with the classical laminate theory (CLT). Various kinds of commercial finite elements software are using 

this method as well. Quadrax fabrics are made by sewing unidirectional reinforcing layers together using 

thin polyester fibers, so the quadrax layer can be taken as an asymmetrical sub-laminate with four 
unidirectional reinforcing layers rotated relative to one another. We used an orthotropic material model 

and based on the structure of the reinforcing layer, moduli E1 and E2 are equal. These tensile moduli and 

the Poisson-ratio can be determined from the tensile test, shear-modulus can be expressed from the 
Iosipescu-test results the following way: 𝐺12 = 𝜏12𝛾12 = 𝐹𝑠ℎ𝑒𝑎𝑟𝐴 𝛾12 . (2) 

where Fshear is the shear force, A is the cross-sectional area and γ12 is the shear strain. 

 
The deformation behavior of the composite face-sheet can be properly modeled using orthotropic 

material model with the above constants, but the modeling method of the core-material depends strongly 

on its structure. Vehicle chassis structures are commonly modeled with shell elements due to their shell-
like geometrical build-up. Furthermore, modeling with shell elements requires less work capacity and 

means less computational time compared to using solid elements. Our aim is to characterize the 

mechanical behavior of the core-material and present a method with which the complete sandwich panel 

can be modeled as a shell. 
The investigated core material is closed-cell PET foam which has thin grooves. These serve that the 

foam can be better formed in a 3D-shape mold and also helps the impregnation process as the resin 

passes through the grooves during injection. After manufacturing, thin resin walls are formed in the core 
which affect the mechanical behavior of the sandwich panel. In order to investigate the effect of this 

wall structure a solid-shell finite element model was built based on the ASTM D7249 measurement 

layout and specimen geometry. The average element size is 2 mm, face-sheets are modeled using shell 
elements with orthotropic material model, the foam with solid elements with isotropic material model 

and the resin walls with isotropic shells having common nodes with the solids of the foam. The elastic 

modulus of the foam is 110 MPa and the resin is 3412 MPa. These were determined via tensile tests. 

The structure of the model is shown in Figure 4. 
We simulated the same four-point bending as the experiment. The contact surfaces of the supports 

and the load introductions were considered infinitely rigid and frictionless contact definitions were used. 

As a vertical displacement, 7 mm was applied. 
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Figure 4. Finite element model of the sandwich core – resin walls with shell elements 

A method is required to determine an equivalent modulus that can be used to characterize the resin 

impregnated foam. To determine this, we used the relationships of the micromechanics, respectably the 

rules of mixture. When applying the rules of mixture, the premise is that there are no cavities or foreign 
material in the composite and there is perfect adhesion between the components.  

 

The equivalent modulus is deducted of a 

primitive cell of the core containing two resin 
walls, which is shown in Figure 5. The normal of 

resin-wall 1 is parallel to the load direction while 

the normal of resin-wall 2 is perpendicular to the 
load-direction. The direction of the resin walls is 

important in determining the equivalent modulus, 

but since a primitive cell is examined and the 

volume of the resin walls are the same, the 
equivalent modulus can be considered as a 

direction independent parameter. 
Figure 5. A “primitive cell” of the foam including 

resin walls 
 

If we first consider only the foam with resin-wall 2, the Voigt-rule [18] can be used to determine the 

Ee1 equivalent modulus as follows: 𝐸𝑒1 = 𝛷1  𝐸𝑟 + (1 − 𝛷1) 𝐸𝑓 , (3) 

where Er is the elastic modulus of the resin, Ef is the elastic modulus of the foam and Φ1 is the resin 
content of the primitive cell without the volume of resin-wall 1.  Φ1 can be derived from the volumetric 

ratio as: 𝛷1 = 𝑉𝑟𝑤1(𝑉𝑝𝑟𝑖𝑚𝑖𝑡𝑖𝑣𝑒 𝑐𝑒𝑙𝑙 − 𝑉𝑟𝑤2)  , (4) 

where Vrw1 is the volume of resin-wall 1 of the figure, Vrw2 is the volume of resin-wall 2 of the figure, 

and Vprimitive cell is the volume of the entire primitive cell. 
If we now consider resin-wall 2 also, then the Reuss-rule [19] can be used to determine the equivalent 

modulus of the complete primitive cell. The expression is as follows: 𝐸𝑒 = (𝛷2𝐸𝑟 + 1 − 𝛷2𝐸𝑒1 )−1 = 𝐸𝑟𝐸𝑒1𝛷2𝐸𝑒1 + (1 − 𝛷2)𝐸𝑟 . (5) 

where Φ2 can be interpreted with the volumetric ratio as: 𝛷2 = 𝑉𝑟𝑤2V𝑝𝑟𝑖𝑚𝑖𝑡𝑖𝑣𝑒 𝑐𝑒𝑙𝑙   , (6) 

Based on these, using the two simple relationships described above, the equivalent modulus of the 
heterogeneous sandwich core material can be determined. 
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The sandwich panels are predominantly 

subjected to bending load, the bigger part of 
tension and compression is taken by the face-

sheets, while the foam is subjected to considerable 

shear. Thus, an equivalent shear modulus is also 
required to model the heterogeneous core material 

of sandwich structures. Recommendations for this 

are given in ASTM C273, Figure 6 shows the 

standard measurement layout. 
 

From the reaction force and the displacement, 

the shear modulus can be calculated in the 
following way: 

Figure 6. Shear test of sandwich core according to 

ASTM-C273 
 𝐺𝑒 = 𝑆 𝑡𝐿 𝑏 (7) 

where t is the thickness of the core, L and b are the length and width of the specimen. S can be 

calculated as follows: 𝑆 = 𝐹𝑟𝑒𝑎𝑐𝑡𝑖𝑜𝑛∆x  (8) 

where Freaction is the evaluated reaction force and ∆x is the crosshead displacement, whereas in the 
virtual test it is the defined displacement. 

 

4.  Results and Discussion 

Table 1 summarizes the orthotropic elastic constants of the quadrax fiber reinforced composite face-

sheet obtained from the tensile- and the shear-test. Both the tensile and the shear tests were performed 

with 5 specimens. Average values and relative scatter are shown. 

 

Table 1. Stiffness parameters of the glass fiber reinforced vinylester matrix composite face-sheet 

Stiffness parameters of composite face-sheet 

E1 (MPa) 18051 ± 15% 

E2 (MPa) 18051 ± 15% 

ν12 (-) 0.298 ± 29% 

G12 (MPa) 7035 ± 9% 

 

After having the elastic constants of the face-sheet, the sandwich panel was analyzed. The 4-point 

bending test results of the detailed model show that neglecting the resin walls in the core, the stiffness 
would be underestimated by approximately 16%, as the reaction forces at 7 mm vertical displacement 

are 1181.5 N with and 1586.5 N without resin walls. 

As the wall structure of the investigated foam is more complex in reality, we applied the procedure 
of rules of mixtures to the entire heterogeneous structure of the specimen. With a wall thickness of 

1.2 mm, the calculation gives an equivalent modulus of 242.2 MPa 
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To test the accuracy and sensitivity of the procedure, a virtual tensile test was performed on the 

heterogeneous core material, without face-sheets, by fixing the nodes at one end and moving the nodes 

at the other end 10 mm longitudinally. With the calculations we investigated the effect of the thickness 
of the resin wall. By evaluating the longitudinal relative elongation (εy) and the reaction force (Freaction), 

the equivalent elastic modulus can be determined as follows: 𝐸𝑒 𝐹𝐸𝑀 = 𝐹𝑟𝑒𝑎𝑐𝑡𝑖𝑜𝑛𝐴𝜀𝑦 . (9) 

The finite element simulations were performed at 0.7 mm, 1.2 mm and 1.5 mm resin wall thicknesses. 

The equivalent elastic modulus values derived from the simulations were then compared to the ones 
determined with the rule of mixtures. 

The comparison is shown in Figure 7. The results obtained by the two methods are in good agreement 

with each other. With 0.7mm wall thickness, the match is perfect, for bigger wall thicknesses, the 
method minimally overestimates the modulus, for 1.5mm resin wall thickness the difference is 4%. 

 

Figure 7. Equivalent elastic moduli carried out from FEM simulations and Rule of Mixture at 

different wall thicknesses 

We performed a virtual test with the shear-measurement lay-up using the solid-shell model of the 

panel. The nodes of the upper sheet were fixed and the nodes of the lower sheet were moved by 20 mm.  
The obtained equivalent shear modulus of the heterogeneous core is 74.6 MPa. 

Beside the moduli, the Poisson-ratio is also to be mentioned. The bending behavior of the sandwich 

is hardly sensitive to the Poisson-ratio of the core. We investigate this with the virtual bending of a 
sandwich specimen modeled with shell elements. The core had an orthotropic material model with the 

moduli values obtained above. The Poisson-ratio was varied from 0.1 to 0.4 with a 0.05 step size. The 

evaluated reaction forces showed less than 0.5% difference between the two extreme cases. Based on 

this for further simulations we have used the Poisson-ratio of 0.35 which comes from the data sheet of 
the raw material. 

Finally, the comparison of the 4-point bending results is summarized in Table 2. 

 

Table 2. Comparison of the 4-point bending results 

 
Freaction (N) 

@ 7 mm vertical deflection 

difference to 

experiment 
simulation time (s) 

experimental test 1811 - - 

FEM model – detailed 1823 3.2% 17446 

FEM model – layered shell 1881 3.7% 317 

 

By having the equivalent engineering constants of the heterogeneous core, it is possible to model the 
complete sandwich panel with layered shell elements. We performed a standard 4-point bending with 

both the detailed model and the layered shell model. The test lay-up follows the standard ASTM-D7249. 
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The model with layered shells has the middle layer with a thickness of 25 mm and an orthotropic 

material model with the engineering constants obtained with the method described above. The average 

element size was 5 mm. The prescribed motion was 7 mm for both models. The reaction force was 
1881.5 N for the layered shells and 1822.9 N for the solid-shell model. To compare, the average reaction 

force value of the tested specimens at 7 mm displacement was 1811.4 N. This means a 3.2% difference 

in comparison to the detailed model and 3.7% difference in comparison to the experiments. In terms of 
simulation time, we got a huge difference. The simulations were performed on a computer with an Intel 

Xeon CPU and 128 GB RAM. This means only a slight difference taking into account that using this 

method is much less time-consuming regarding the modeling complexity and also the simulation time. 

So, the method can be effectively used to model sandwich panels with heterogeneous core materials. 
 

5.  Conclusions 

The aim of the study is to develop a method with which the deformation behavior of the sandwich 
structure can be effectively modeled with shell elements in finite element analyses. In this study, first, 

we derived the stiffness parameters of the composite face-sheets from the tensile- and shear-tests, then 

investigated the effect of the resin-walls in an inhomogeneous core material on stiffness. The 4-point 
bending tests of a detailed model show that neglecting the effect of these resin walls would 

underestimate the stiffness with almost 16%. Voigt- and Reuss-rules can be effectively used to 

determine the equivalent tensile moduli of such core materials. When having the equivalent stiffness 

constants, the modeling of the whole sandwich structure with a layered shell is possible. Results are 
validated with the mixed solid-shell models and the experimental tests. They show that a difference of 

less than 4% in comparison to the experimental test can speed up the simulation time with two orders of 

magnitude. 
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